

Italian Trade Agency

Market Study on the Energy Transition in Canada

Summary

- I. Macroeconomic Overview
- II. Canada's Policy Landscape
- III. Canada Energy Transition: from fossil to clean
- IV. Canadian energy market
- V. Canada's clean energy value chain
- VI. Financing, subcontracting and procurement policies
- VII. Regulatory and legal requirements for suppliers
- VIII. Successful Market Entry
- IX. Interviews
- X. Case studies
- XI. Directory Key Stakeholders
- XII. Trade shows

I. Macroeconomic Overview

STABLE AND HIGH-INCOME ECONOMY

- Area (total), 2024 : 9,984,670 sq km
- Population (total), 2024: 38,794,813
 - → 86,5% of the country's population is concentrated in its four largest provinces: Ontario, Quebec, British Columbia, and Alberta.
- Strong population growth: 2,9% Population density: 4,2 inhabitants/km²
- High Urbanization, 2024: 74,8%
 - → Major urban areas: Ontario (15,996 million), Quebec (9,030 million), British Columbia (5.646 million), Alberta (4,849 million), Manitoba (1,484 million)
- Real GDP (purchasing power parity), 2024: \$2.515 trillion
- GDP growth (2024):1.6 %
 - → Forecast (2025 2030) :1,5 %
- Inflation rate: 2.4% (2024 est.)
- Top industries: services, manufacturing, mining, construction, all high-energy users

FOCUS ON THE ENERGY SECTOR

- 10.3% of Canada's GDP (2024): \$220.4 billion
 - → Direct: 8.9%→ Indirect: 1.4%
- Energy exports, 2023: \$199.1 billion to 123 countries (with 89% to the United States)
- Energy imports, 2023: \$57.9 billion
- Energy demand expected to grow 20–40% by 2050
- Regional consumption: Ontario, Alberta, and Quebec accounted for 73.7% of total energy use
- Capital expenditures, 2023 : \$92 billion
 - → Oil and gas extraction as the largest area (\$39.2 billion)
 - → Electrical power generation and distribution (\$27.6 billion)
- Government revenues (2018-2022): averaged \$19.3 billion per year from energy sector

TRANSITION FROM FOSSIL FUELS TO LOW OR ZERO CARBON ENERGY

Energy mix by province :

Ontario	Largest population & demand, nuclear-heavy, strong industrial base
Québec	Hydro-dominated, 99% renewable electricity, leading in green hydrogen, solar and wind
British Columbia	Renewable mix + LNG, active in carbon pricing
Alberta	Oil & gas base, investing in CCUS & renewables
Newfoundland & Labrador	Hydro + offshore wind potential

- → Provinces like Ontario, Québec, Alberta, BC, NL each offer different energy profiles and opportunities
- The \$2 Trillion Transition: Canada's Road to Net Zero
- \$280 B of public Investments in infrastructure, clean energy & grid modernization

THE 7th LARGEST PRODUCER OF RENEWABLE ENERGY IN THE WORLD (2.44%)

Canada production: - 2,121 PJ or 50.7 MTOE (2022)

• Final renewable energy consumption across electricity, transportation, heating: 27%.

II. Canada's Policy Landscape

Key Milestones

Strong Federal push with Provincials nuances

- Climate policy anchored by the Net-Zero Emissions Accountability Act (2021): legally binding 2050 target.
- Rapid scale-up of clean electricity generation, primarily solar and wind, as they will form the backbone of future energy systems.
- Provinces manage energy, creating a patchwork of policies and opportunities:
 - → Québec and BC: pioneers (hydro, carbon pricing, green hydrogen)
 - → Ontario: hybrid approach, big on nuclear and EV supply chains
 - → Alberta, SK: cautious, focused on CCS and fossil competitiveness

Carbon Pricing

- Federal carbon tax: \$80/tonne (2024) \rightarrow \$170 by 2030
- Revenues recycled: household rebates + funding for clean energy programs
- Key incentives (2023 Budget):
 - → \$80B+ tax credits for clean tech, CCUS, hydrogen, renewables
 - → \$15B Canada Growth Fund + \$35B Canada Infrastructure Bank

Canada has enshrined net-zero into law and created multiple layers of regulation, tax incentives, and sectoral mandates to drive the transition.

II. Canada's Policy Landscape

Stakeholders and their positions on ET

Stakeholders	Туре	Role
 Government Canada Energy Regulator (CER) Key Regions (Quebec, British Colombia, Alberta & Saskatchewan, Ontario) 	Government & Regulatory Bodies	 Advocates full alignment with Paris Agreement & net-zero 2050; drives policy innovation and funding Public relationship & communication strategy input Pro-clean growth, legally binding targets, strong funding
 Hydro-Québec, OPG, BC Hydro 	Utilities Companies	 Renewable energy generation, electrification of transport Actively involved in expanding interprovincial and international transmission lines to export clean energy and support grid decarbonization.
 Energy Utilities Boards (AUC, BCUC, OEB) 	Regulatory Authorities	 Approve/disapprove energy projects and pricing Protect consumer interests while encouraging clean energy integration
 Metropolitan communities (Vancouver, Montreal, Toronto) 	Municipal Governments	 Implement local transition plans, retrofit programs Promote district energy systems, building codes for net-zero housing
■ Banks	Financial Institutions	 Provide capital for energy infrastructure projects Integrate climate risk assessments into lending and investment decisions
 Indigenous communities 	Indigenous Governments / Rights Holders	 Stewardship of traditional territories Participate in co-development of renewable energy projects Assert consultation and consent rights under Canadian law (e.g., Duty to Consult)
 Industrial & Commercial energy users 	Private Sector / Industry	 Invest in industrial decarbonization Commit to purchasing renewable energy through Power Purchase Agreements (PPAs)
NGOs & Civil Society	Civil Society Organizations	 Advocate for equitable transition policies Raise awareness and push for environmental justice and community participation
Academia & Research Centers	Universities / Think Tanks	 Provide innovation, modeling, and policy advice Support workforce skills development for the green transition

This landscape illustrates the complex interplay between various stakeholders in Canada's energy transition, highlighting the challenges and opportunities in aligning diverse interests towards a sustainable future.

Key insights

- Canada's net-zero target (2050) requires \$2 trillion in investment over 20 years.
- A "dual strategy": emissions reduction + modernized fossil infrastructure.
- Key regulatory levers: carbon pricing, CER, CCUS incentives, tax credits...
- Regional differences: Alberta/Saskatchewan more fossil-dependent, vs. Quebec/BC almost 100% low-carbon.
- Skills transition: ~200,000 workers may need upskilling/reskilling by 2030.
- Indigenous partnerships: 200+ Indigenous clean energy projects operating.

Source	Share of Renewables	Capacity	Facts
Hydro	67,7 %	85 GW	609 sites; 60% of electricity
Wind	6,4 %	18 GW	341 projects; 30 GW by 2030
Solar	2,5 %	5 GW	48 000+ installs
Energy Storage	/	330 MW	8 GW needed by 2035
Nuclear	13 %	18,7 GW	19 reactors; SMR roadmap
CCUS	/	11 active/storage	743 Mt/year goal
Hydrogen	4,5 Mt prod.	100+ projects	\$50B sector by 2050
Biomass	24,6 %	1 800 PJ	640 bioheat systems
Tidal	0,1 %	20 MW	Bay of Fundy focus

Takeaways:

- Hydro remains the backbone of Canada's low-carbon electricity mix
- Wind and solar are expanding rapidly, but face storage and integration challenges
- CCUS and hydrogen are emerging to decarbonize heavy industry
- Grid modernization is critical to support growing renewables
- Indigenous partnerships are central to a just and inclusive transition

Business Opportunities

> Hydro & Transmission Upgrades

→ Modernization of hydropower plants, advanced turbines, interprovincial interconnections

> Wind & Solar

→ EPC contracts, equipment supply (towers, blades, inverters), operations & maintenance services

Energy Storage

→ Battery storage solutions, system integration, engineering

CCUS & Hydrogen

 \rightarrow Engineering expertise, CO₂ transport and storage technologies, electrolyzers, project design

Industrial Decarbonization

→ Efficiency retrofits for cement, steel, and mining industries

Digital & Smart Grids

→ Smart metering, digital grid management, cybersecurity

Focus on renewable energy sectors

a) Hydro, backbone of Canada's electricity

Key figures

- Canada is the #2 hydro producer in the world
- Hydro = 60% of national electricity,
- 609 hydro facilities nationwide
- 130,000 direct and indirect jobs
- Hydropower GDP contribution: \$35+ billion
- Untapped hydro potential: 155,000 MW (nearly twice current capacity)

Key insights

- Six out of ten Canadian homes are powered by hydro
- Provinces with over 90% hydro electricity: Quebec (93.6%), Manitoba (97%), Newfoundland & Labrador (95.8%), BC (89%)
- Major assets: Hydro-Québec (41.5 GW), Romaine Complex (1.55 GW), Site C (1.1 GW)
- Main challenges: climate change (variability of water resources) and aging infrastructure
- Growing Export opportunities: to the U.S. and interprovincial transfers

Takeaways:

- Hydropower is critical for achieving Canada's net-zero goals
- Significant investment needs for modernization, refurbishing, and grid integration
- Highly reliable and dispatchable renewable source compared to variable wind/solar

Business Opportunities

- Refurbishment and modernization of existing hydro plants (turbines, digital controls, efficiency upgrades)
- Engineering and design of new projects (including small hydro and run-of-river)
- > Consulting on climate resilience for hydro infrastructure
- > Grid connection and interconnection equipment
- > Environmental and social impact assessments for new hydro sites
- > Partnerships with Indigenous communities for hydro developments

Focus on renewable energy sectors

b) Wind, Solar, Biomass — Fast Growth, Local Challenges

Wind	 18 GW installed capacity (2023) 9th largest in the world 341 projects across Canada Target: 30 GW by 2030 Potential investment: \$79B, 52,000 jobs Expected growth rate: ~8.8% CAGR (2025–2030)
Solar	 5 GW installed capacity today Target: 35 GW by 2050 314 MW installed in 2024 alone Over 48,000 individual installations Market revenue (2022): CAD 975.4 million
Biomass	 Total primary energy: ~1,800 PJ Heating for approximately 7 million households 640 operational bioheat systems Bioenergy revenue: CAD 8 billion 83% of systems under 1 MW capacity

Key insights

- Canada is a top-10 wind and solar market globally but faces regional permitting bottlenecks.
- Solar and wind are highly seasonal and geographically dependent, stressing the importance of storage and grid upgrades.
- Biomass remains underexploited despite huge resource potential, with prospects for advanced biofuels (e.g., Enerkem's Varennes Carbon Recycling plant).
- Indigenous communities are increasingly involved in wind, solar, and biomass partnerships.
- Strong government incentives (e.g., tax credits, SREPs funding) are accelerating renewable projects.

Takeaways:

- Wind and solar are growing fast, but require more storage and flexible grid connections
- Permitting and community engagement are critical for accelerating renewable deployment
- Biomass has untapped potential, especially in advanced biofuels and bioheat
- Consistent policy support is helping Canada meet clean electricity targets

Business Opportunities

Wind & Solar

- → EPC contracts, advanced blades, towers, inverters, operations & maintenance solutions
- → Engineering and design services for integrating variable renewables
- → Support for microgrid and hybrid renewables in remote communities

Biomass

- → Supply of advanced bioenergy equipment (boilers, gasifiers, CHP systems)
- → Engineering and technology for advanced biofuels
- → Partnerships with pulp & paper mills for cogeneration retrofits

> Cross-cutting

- → Digital grid integration tools
- → Permitting, environmental and social impact assessments
- → Skills and workforce training services
- → Co-development with Indigenous communities

Focus on renewable energy sectors

c) Carbon Capture & Storage (CCS)

Key figures

- 11 major CCS projects, including:

Quest (Shell): 9 Mt CO₂ captured since 2015ACTL (240 km CO₂ pipeline) Polaris CCS (FID 2024)

ACTL (Alberta Carbon Trunk Line): 240 km CO₂ pipeline

- National storage goal: 743 Mt of CO₂ per year by 2030
- Global share: Canada represents 5.8% of world CCS capacity
- CCUS market revenue forecast (2030): ~\$400 million
- Gov't support: tax credits, Canada Growth Fund
- Risks: cost, permitting, opposition

Key insights

- CCS is essential to decarbonize hard-to-abate sectors (cement, steel, oil & gas).
- Strong federal support: tax credits, Canada Growth Fund guarantees, and carbon pricing framework
- Regulatory frameworks evolving to allow underground storage (notably in Alberta and Saskatchewan)
- Public and NGO opposition present due to links with continued fossil fuel production
- High CAPEX and OPEX are barriers for wider deployment
- Provinces are coordinating CCS hubs to pool resources and infrastructure

Takeaways:

- CCS is positioned as a pillar of Canada's industrial decarbonization pathway
- National and provincial governments are backing CCS with incentives and funding
- Infrastructure build-out (pipelines, hubs, monitoring systems) is key for achieving 2030 climate goals
- Long-term acceptance will depend on public trust and transparent governance

Business Opportunities

> Engineering & technology

ightarrow CO $_2$ capture systems, compressors, pipelines, well completions for injection sites

Project development & consulting

→ Feasibility studies, environmental permitting, risk analysis, monitoring services

> Equipment supply

→ Materials, storage tanks, control systems, CO₂ transport and injection technologies

Digital & data

 \rightarrow Software for monitoring CO₂ flows, environmental reporting, performance tracking

Collaboration

- → Joint ventures for pilot CCS sites, especially in Alberta and Saskatchewan
- → Expertise transfer in carbon credit certification and carbon market design

Focus on renewable energy sectors

d) Nuclear — the quiet pillar of Net Zero

Key figures

- 19 CANDU reactors → 13% of electricity
- OPG, Bruce Power = key players (ON + NB)
- SMR roadmap = Darlington SMR, Monark Reactor, Chalk River MM
- RNew builds & refurbishments key to future capacity

Key insights

- Canada's nuclear fleet supports a stable low-emissions baseload
- SMRs are seen as a flexible, scalable zero-carbon solution for remote or industrial sites
- OPG and Bruce Power are leading operators with experience in refurbishment projects
- Safety and waste management remain top public concerns
- Federal and provincial governments are aligning policy to streamline licensing of new builds and SMRs
- Strong international recognition of Canadian CANDU technology

Takeaways

- Nuclear is crucial for achieving net-zero while ensuring grid reliability
- SMRs are a growth sector for off-grid and industrial decarbonization
- Refurbishments and modernization of reactors will sustain capacity to 2050
- Social acceptance and waste strategies are critical for future growth

Business Opportunities

> Engineering & Components

- → Equipment, robotics, and control systems for reactor refurbishment and SMR construction
- → Instrumentation, sensors, safety equipment, and advanced materials

> Design & Consulting

- → Feasibility studies for SMR deployment
- → Support for nuclear waste management and decommissioning

> Digital

- → Digital twins, predictive maintenance, and cybersecurity solutions for nuclear assets
- > Supply Chain Partnerships
 - → CANDU component supply, replacement parts, joint-ventures with Canadian OEMs
- > Training & Skills
 - → Workforce development programs for nuclear engineers and technicians

Focus on renewable energy sectors

e) Energy Storage & Hydrogen: Twin Enablers

Key figures

Storage	 Market size: CAD 1.3B (2023) → CAD 5B by 2035 330 MW installed; 8 GW required by 2035 Flagships: Oneida (250 MW), Tara (400 MW), Hydrostor (CAES)
Hydrogen	 4.5 Mt/year today CAD 527M sector revenue (2021) 80+ projects with >\$100B potential value under development Target: 30% of end-use energy by 2050 350,000 jobs expected by 2050

Takeaways

- Both sectors are critical enablers of net-zero
- Funding and policy supports are robust
- Skills and local capacity needed

Key insights

- Hydrogen's growth tied to green export markets and heavy industry
- Energy storage key to integrating renewables
- Provincial strategies and tax credits encourage investment
- Infrastructure gaps and permitting delays are challenges

Business Opportunities

- > Battery systems, flow batteries, safety systems
- > Hydrogen electrolyzers, distribution pipelines
- > EPC services for storage projects
- > Certification, permitting, and consulting
- > Joint ventures with Canadian developers

IV. Canadian energy market

Key figures

- \$220 billion \rightarrow 10.3% of Canadian GDP from the energy sector (2024)
- 66% renewable share in electricity generation
- 166,000 km of high-voltage transmission lines
- \$400 billion investment required by 2050 for net-zero grid
- 697,000 total jobs in the energy sector (direct + indirect)

Key insights

Canada's energy system: fragmented, regulated, and full of opportunity

- Canada has no national energy system: electricity is regulated at the provincial level.
- Each province = its own utility model, regulatory agency, and grid strategy.
- Hydro dominates in QC, NL, BC, MB. Nuclear in ON, Gas in AB/SK.
- 66% of generation is renewable but transmission is a key barrier. Currently well over 166,000 kilometers of high voltage transmission lines in Canada.

Grid and Transmission insights

- Most infrastructure is intra-provincial, not national.
- Intertie expansion (QC-ON, MB-SK, AB-BC) is urgent for electrification goals.
- New investments required: \$400B by 2050 to meet net-zero grid needs.
- Utilities = key gatekeepers: Hydro-Québec, OPG, BC Hydro, SaskPower...

Takeaways

- Canada's energy market is fragmented, requiring tailored provincial approaches
- Major opportunities driven by clean electricity, grid modernization, and interties
- Utilities act as gatekeepers, with strong control over grid access
- Long-term, stable policy frameworks and climate targets provide predictability

Business Opportunities

How to access the market for ANIE members: Utilities, Tenders & Partnerships

- Utilities and grid operators are primary clients. Study each province individually because energy policy, clients, and grid access vary significantly. Get listed on utility vendor registries (Hydro-Québec, OPG, BC Hydro...) for procurement.
- Public procurement varies: prequalification, local registration, tender portals. Québec, Ontario, Alberta offer the best mix of public contracts + B2B opportunities.
- Private B2B market = work with EPCs, local partners, engineering firms and integrators to avoid direct regulatory burden
- ➤ **Transmission projects** → often in joint ventures with Indigenous partners

V – Canada's clean energy value chain

Pipeline of clean energy projects by Province

- Ontario: 7.5 GW storage RFPs, SMRs (OPG x AtkinsRealis x Aecon), nuclear refurbishments
- Québec: 10 GW new wind, new pumped hydro, HVDC line for export and remote regions
- British Columbia: 10 projects accounting for 1.6 GW renewables (wind & solar), Site C Dam in progress
- Alberta: Pathways CCS hub (\$16B), 5 GW renewables pipeline (solar / wind)
- Manitoba: 600 MW wind RFP w/ Indigenous partners, grid reinforcement

Who buys? Your future clients in Canada

Province	Utilities	IPPs	EPC's	Distributors
ON	OPG	Bruce Power Northland Power	Aecon Hatch	
QC	Hydro-Québec	Boralex Innergex	AtkinsRealis	Graybar
ВС	BC Hydro	Innergex	Ledcor	Wesco Sonepar
АВ	TransAlta	Capital Power	Borea	Guillevin
MB	MB Hydro	Indigenous Power Partners	PCL	

Keys insights

Each clean energy sector (storage, hydro, solar, wind, CCS) has a clearly defined value chain:

feasibility \rightarrow design \rightarrow procurement \rightarrow installation \rightarrow operation.

Italian firms can insert themselves at different stages, where equipment, engineering services, and components are most in demand. Most tenders involve **EPC contractors or project developers** who source internationally. Partnering with them is essential.

Sector's components

Solar & Wind (Alberta, Québec, Ontario, Manitoba): panels, inverters, trackers, cabling, turbines, blades, steel towers, switchgear

Hydro (Québec, BC, MB): turbines, gates, transformers, relays

Storage (**Alberta**, **Ontario**): batteries (Li-ion), PCS, CAES tech, cables, EPC contracts (battery farms)

CCS (Alberta, SK): compressors, pipelines sensors, absorbers

VI – Financing, subcontracting and procurement policies

How public procurement works in Canada's Energy Sector

- Procurement is mostly provincial, with federal guidelines
- Projects often led by Public utilities (Hydro-Québec, BC Hydro...) and Independent system operators (IESO, AESO)
- **Public Sector**: open to international bidders via CETA & other treaties. Key portals: CanadaBuys, SEAO (Québec), MERX (Ontario), BC Bid.
- **Private Sector**: RFP-driven but more flexible, EPC & IPP manages project while Subcontractors handle equipment supply, O&M, logistics, engineering

PPPs & PPAs

• Public-Private Partnerships (P3):

Common in infrastructure, emerging in energy (e.g., storage, EV). Long-term contracts, shared risk model.

Power Purchase Agreements (PPAs):

Used for generation: wind, solar, hydro.

Utility PPAs – Regulated with RFPs: 20–30 years (e.g., Hydro-Québec, SaskPower IESO Ontario)

Procurement Models by Province

Province	Authority / Model
ON	IESO (RFP), Infrastructure Ontario (P3)
QC	Hydro-Québec (tenders + PPAs)
ВС	BC Hydro (EPA calls), Partnerships BC
АВ	AESO, Market-based RFPs
МВ	MB Hydro (tenders, indigenous partners)

VI – Financing, subcontracting and procurement policies

Subcontracting & Consortia: a strategic entry path

Key Models:

- Joint ventures, consortia, or subcontracting roles are common
- Provincial programs often require Indigenous partnerships (e.g., SaskPower, Hydro-Québec)
- Many large projects use multi-layered supply chains: entry possible even without leading bid
- Tip for SMEs: join consortia with Canadian primes to build track record & qualify for bids

Financing clean energy projects in Canada

Banking Environment:

- Strong, open, stable system project finance widely used
- Top lenders: RBC, TD, Scotiabank, Desjardins
- Canada Infrastructure Bank (CIB): co-invests in clean energy (e.g., \$97M for wind farm)
- Grants: SREP, Clean Investment Tax Credits (up to 30%).
- Tip for SMEs: partner with local developers to access public grants & simplify financing

Keys to success for Italian SMEs

Use trade agreement access (CETA)

Seek Subcontracting & JV pathways (EPC, IPPs, etc.) – Build Indigenous & local partnerships

Monitor provincial RFPs closely: MERX, SEAO, BC Bid, etc.

Procurement Desk at ICE Montreal (Osservatorio Gare e Appalti)

Engage early with Canadian banks or project sponsors

VII – Regulatory and legal requirements for suppliers

Who regulates energy in Canada?

Canada's regulatory model is provincial, not national. Each province has its own energy board:

- Ontario: Ontario Energy Board (OEB)
- Québec: Régie de l'énergie + Ministry
- Alberta: Alberta Utilities Commission (AUC)
- BC: BCUC + BC Energy Regulator (LNG/oil)

Each province has its own permitting rules and authorities → adapt strategy per province

Federal Canada Energy Regulator (CER) handles cross-border and interprovincial lines, export/import licences.

Impact Assessment Act and Indigenous rights consultation are also key.

Key Regulatory Areas

Area	Canada Requirement
Certifications	CE ≠ CSA/UL. Must certify to CSA or UL standards to enter the market
Licensing	No "business license" needed to sell, but project- specific permits may apply
Environmental Review	Large projects require federal or provincial EA, especially if >10 MW or >2km line
Public Consultation	Mandatory for large projects, especially where Indigenous rights are involved

VII – Regulatory and legal requirements for suppliers

Licensing requirements for suppliers

- Register business in Canada (federal + extra-provincial registration)
- Certain electrical contractors may need provincial licences (e.g., ESA in Ontario)
- Engineering work must be reviewed by a licensed P.Eng
- Developers of energy projects need generation licences (e.g., OEB in Ontario, AUC in Alberta)

Import documentation & procedures

- **CETA eliminates most tariffs** → duty-free entry if origin declaration is provided + access to public tenders
- Require: invoice, origin declaration (with REX if >€6,000), CSA mark, efficiency verification
- Québec: product labels/manuals must be in French
- Must consult Indigenous communities if project affects rights
- Public consultation is legally required in most provinces

Keys to Success for Italian SMEs

Know provincial rules and regulators (OEB, AUC, Hydro-Québec, etc.)

Align your product with **CSA/UL** standards (not just CE)

Plan for customs, energy efficiency declarations, bilingual documentation

Be proactive with Indigenous/public consultations → essential for project approval

Soft local content expectations: utilities value job creation & support

VIII – Successful Market Entry

How to enter the Canadian energy market: A 360° Strategy

- Having a 1st business trip to get a sense of the market and meet potential partners
- Trade shows and sector associations to build presence, contacts, and being informed of upcoming opportunities
- Local partnerships (EPCs, Industrial clusters and innovation hubs, agents, Indigenous businesses) for fast access
- Participation in pilot/demo projects to build references
- Monitoring tenders and regional strategies
- Success requires local trust, technical compliance, and proactive visibility

How to position your offer:

Certifications: CSA/UL, NRCAN, grid compatibility

Bilingual packaging and docs (QC)

Competitive pricing: long tender cycles = high price sensitivity

Maintenance strategy: local technicians, response time

Proof of concept: pilot first → scale after

VIII – Successful Market Entry

Sales Channels & Business Models: Which one fits you?

Model	Strengths	Risks
Local Subsidiary	Full control, local trust, subsidies access	Costly to set up, complex compliance, longer time to scale
Direct Sales	Full control, brand-building	High investment, long sales cycles
Distributors / agents	Fast training, low risk, easy market access, local support	Less control, shared margin, dependency on partner
EPC/JV Partnering	Access to big projects, reliable delivery, technical expertise	Margin erosion, dependency
Public Procurement x Tenders	Visibility, volume, local benefits	Costly bidding, high risk, strong competition

Who can help you? Your strategic allies – Ecosystem Map

VIII – Successful Market Entry

Final Takeaways for ANIE Members

Canada is not just 1 energy market, but 10+ energy systems – think by province

Focus on **partnerships**: EPCs, utilities, agents, Indigenous orgs

Adapt your products to local expectations: standards, language, support

Build presence and credibility: events, pilot projects, cluster engagement

Monitor tenders, subsidies, and infrastructure plans proactively

IX – Interviews

The approach

To reinforce this market study with real-world intelligence, we conducted interviews with a diverse group of professionals actively involved in Canada's energy transition.

We spoke with leading stakeholders across the following sectors:

- Utilities
- EPC firms (engineering, procurement & construction)
- Independent Power Producers (IPPs) and energy service companies
- Industry associations
- Indigenous organizations

10 tips we sorted out from the interviews

- 1. Adapt to **CSA/UL** certification standards early.
- 2. Work through local EPCs or project developers.
- 3. Use **demonstration projects** to establish credibility with Canadian buyers.
- 4. Invest in a local footprint (even minimal) to ensure post-sale support and trust.
- 5. Understand **each province's market individually**, e.g., Ontario ≠ Québec ≠ Alberta.
- 6. Build **joint ventures or licensing partnerships** to reduce risk and accelerate entry.
- 7. Engage Indigenous partners from day one when land or permitting is involved.
- 8. Focus on long-term ROI and stable pricing, not just CapEx; Canadian buyers are risk-averse.
- 9. Tailor communications to Canadian market values: trust, transparency, public benefit.
- 10. Show how your EU-based expertise aligns with Canadian economic and regulatory goals.

Keys to Success for Italian SMEs

There is the full transcripts of all interviews in the study, allowing you to explore direct feedback and market expectations from experienced stakeholders across Canada's energy landscape.

X – Case Studies

Event	Country	Technology	Location	Partnership x Client	Drivers
Universal Kraft	Portugal	Solar (10 MW) + 1 200 homes	New Brunswick	Neqotkuk First Nation	Indigenous equity (51%), local grid connection
Vestas	Denmark	Wind (140 MW)	Alberta	Capital Power, Indigenous equity	Tech leadership, service contract (10 yrs), local trust
ABO Energy	Germany	Wind 15 000 homes	New Brunswick	Pabineau First Nation	Siting expertise, grid access, local buy-in
Prysmian	Italy	20km Submarine Cable	New Brunswick	New Brunswick Power	Niche expertise, marine logistics, on-time delivery
ATB Group	Italy	5 100 gigawatts / year Hydro equipment	British Columbia	BC Hydro	Full scope supply, Canadian subsidiary, localization
EDP Renewables	Portugal	BESS (300 MWh)	Ontario	Caldwell First Nation	First storage in Canada, revenue sharing model
Hitachi Energy	Switzerland	1 500 MW HVDC transmission	Québec → New York	Hydro-Québec	Grid modernization, Canadian R&D investment
Prysmian	Italy	9 km of new 25 kV underground feeders	Québec	Hydro-Québec	New distribution to increase local capacity & support growth
Landis+Gyr	Switzerland	4.4 million electricity smart meters	Québec	Hydro-Québec	Grid modernization

XI – Directory of key stakeholders

Understanding the Canadian energy ecosystem is essential for successful market entry. The following categories summarize the most relevant B2B actors:

Category	Examples of key players	
Energy Utilities	Hydro-Québec, BC Hydro, Ontario Power Generation, Manitoba Hydro	
EPC contractors	Hatch, Borea, AtkinsRéalis, Stantec, Aecon, Aecom, WSP, BBA	
Technology & Equipment	Siemens, ABB, Vestas, Nexans, Prysmian, ATB Group, Schneider, Veolia, Canadian Solar	
Integrators & IPPs	Northland Power, Innergex, Boralex, BluEarth Renewables, TransAlta, Bruce Power	
Distributors & Wholesalers	Rexel, Wesco, Sonepar, Graybar	
Associations & Clusters	CanREA, Electricity Canada, Electric Mobility Canada, Propulsion Québec, WaterPower Canada	
Indigenous Organizations	Indigenous Clean Energy, FNPA, AFN, FNMP Coalition	
Regulatory & Government	Canada Energy Regulator, Natural Resources Canada	

XII – Trade shows

Event	Focus	When / Where
Global Energy Show	All energy incl. O&G	June 9 – 11 2026, Calgary
Electricity Transformation Canada (CanREA)	Renewables & Clean Tech	October 6 – 8 2025, Toronto
Globe	Multiple events on clean economy	Canadian Climate Week November 24 – November 30, 2025, Toronto
CanREA 2026 Events Series	Electricity Transition, Energy Storage, Clean Power	TBC for 2026 – All provinces
Energy Storage Canada	Energy Storage	September 25 – 26 2025, Toronto
Canadian Nuclear Association (CNA)	Nuclear	TBC for 2026
SMR Small Modular Reactor Canada	Nuclear	March 2026
Enercom Expo	Electricity Distribution	March 22 – 26, 2026, Toronto
Carbon Capture Canada	Carbon Capture	September 23 – 25 2025, Edmonton
EV & Charging Expo	Electric Automotive	April 8 – 9 2026, Toronto
EV Charging Summit & Expo	Electric Automotive	March 17 – 19, 2026, Las Vegas
Canadian Hydrogen Convention	Hydrogen	April 21 – 23 2026, Edmonton
Hydrogen East Halifax	Hydrogen	April 13, 2026, Halifax
Hyvolution	Hydrogen	October 1 – 2, 2025, trois-Rivières
Smart Energy	Clean Energy	April 14 – 15, 2026, Halifax
Clean Fuels Canada	Low Carbon	May 5 – 6, 2026, Strathcona
Smart Grids Canada	Electricity distribution	TBC for 2026
CIGRE Canada	Power & Infrastructure	September 29 – October 3, 2025, Montreal
EDIST	Electricity distribution	January 19 – 22, 2026, Toronto January 18 – 21, 2027, Toronto
Americana	Largest multisectoral environmental trade show in North America	TBC for 2026
P3 Annual Conference	PPP Infrastructure	October 27 – 28, Toronto

